

ON THE ASSOCIATION BETWEEN ALAN (ESPECIALLY OF SHORT WAVELENGTH) AND BREAST CANCER IN HAIFA REGION

A TALK TO THE MEMORY OF PROFESSOR ABRAHAM HAIM

ALAN is linked to:

- sleep disturbance
(Martin et al., 2012; Obayashi et al., 2014)
- obesity
(Obayashi et al., 2012; McFadden et al., 2014)
- hormone-dependent cancers, including breast cancer (BC)
(Schernhammer et al., 2003; Haim & Portnov, 2013; Hurley et al., 2014; Rybnikova et al., 2015, 2016a)

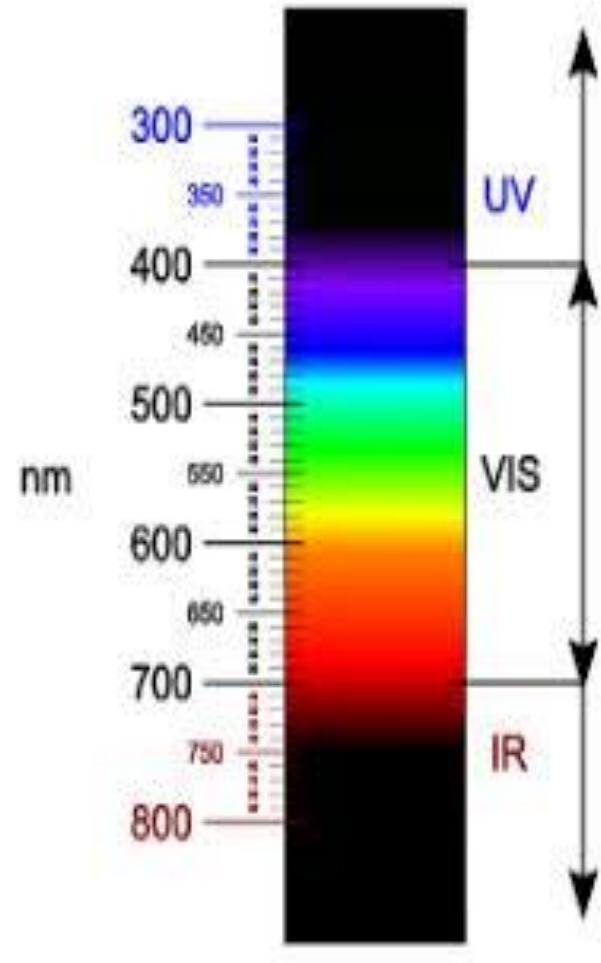
ALAN-BC: mechanisms behind

- working as a general stressor and endocrine disruptor
(Ashkenazi & Haim, 2012; Haim & Portnov, 2013)
- daily rhythm disruption
(Stevens & Rea, 2001; Haim & Portnov, 2013)
- suppression of nocturnal melatonin production
(Blask et al., 2011; Haim & Portnov, 2013)

Melatonin $C_{13}H_{16}N_2O_2$

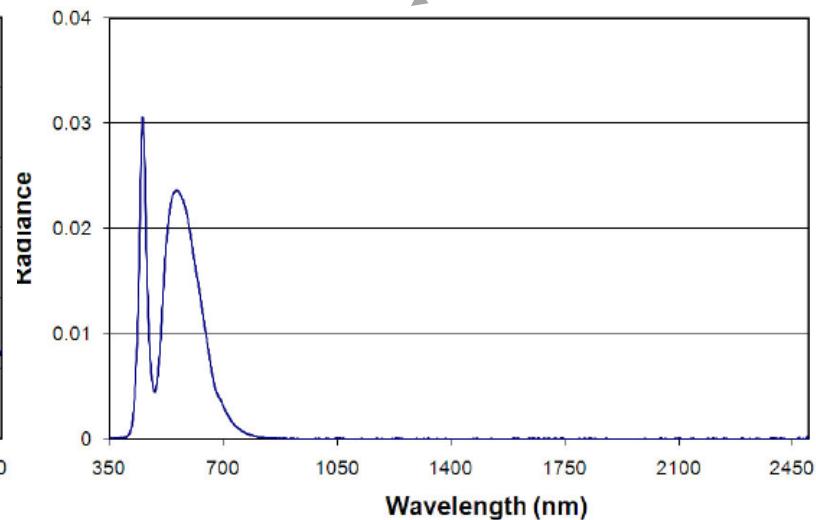
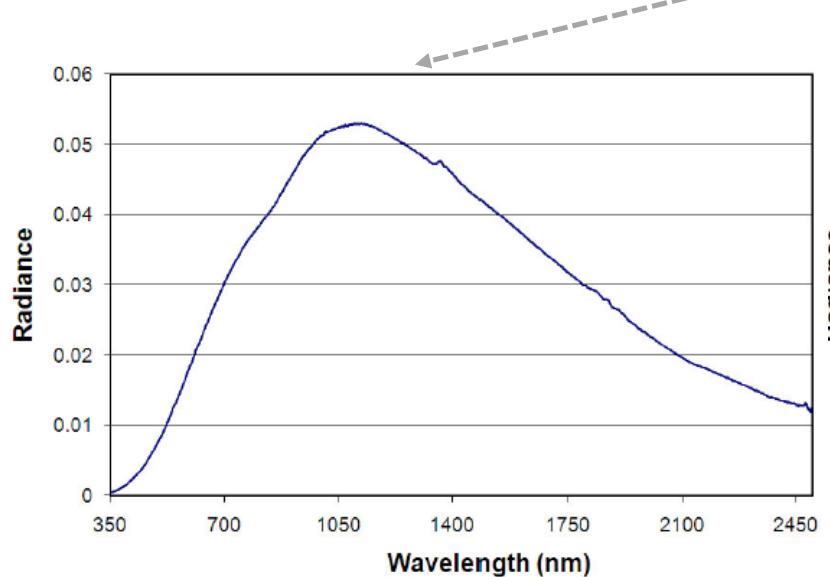
Blue light suppresses melatonin the most

Brainard et al., 2001:


72 males and females (24.5 ± 0.3 yo)
exposure to ALAN of different spectrum
melatonin blood tests at 2:00-3:30 am
Results: 446–477 nm ALAN - circadian
input for regulating melatonin secretion

Wright et al., 2004:

42 females and males (27.6 ± 9.1 yo)
exposure to ALAN of 470, 495, 525, 595
and 660 nm
Results: 470, 495 and 525 nm ALAN was
most effective in suppressing nocturnal
melatonin



Cajochen et al., 2005:

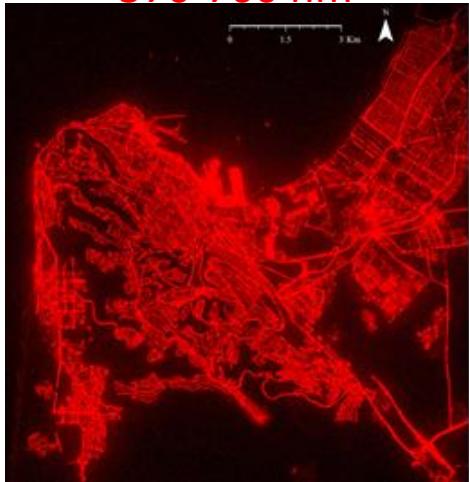
10 males (25.9 ± 3.8 yo)
exposure to ALAN of 460 and 550 nm
Results: 460 nm ALAN induced a
significantly greater MLT suppression.

Research hypothesis

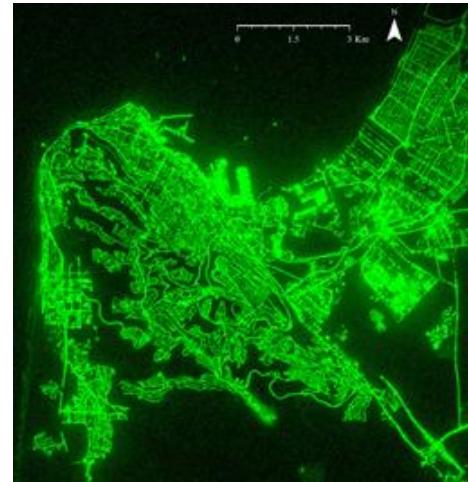
Elevated BC rates in high income populations groups might be attributed to their elevated exposures to short wave-length ALAN

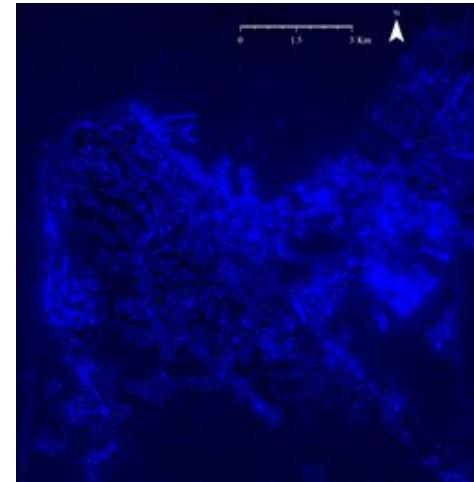
Source: Elvidge & Keith, 2014

Study aims


- To determine whether residents of **high income urban areas** are exposed to more **blue ALAN** than people residing in **low income areas**
- To determine the extent to which hormone-dependent **BC** incidence can be explained by **short wavelength ALAN** exposure

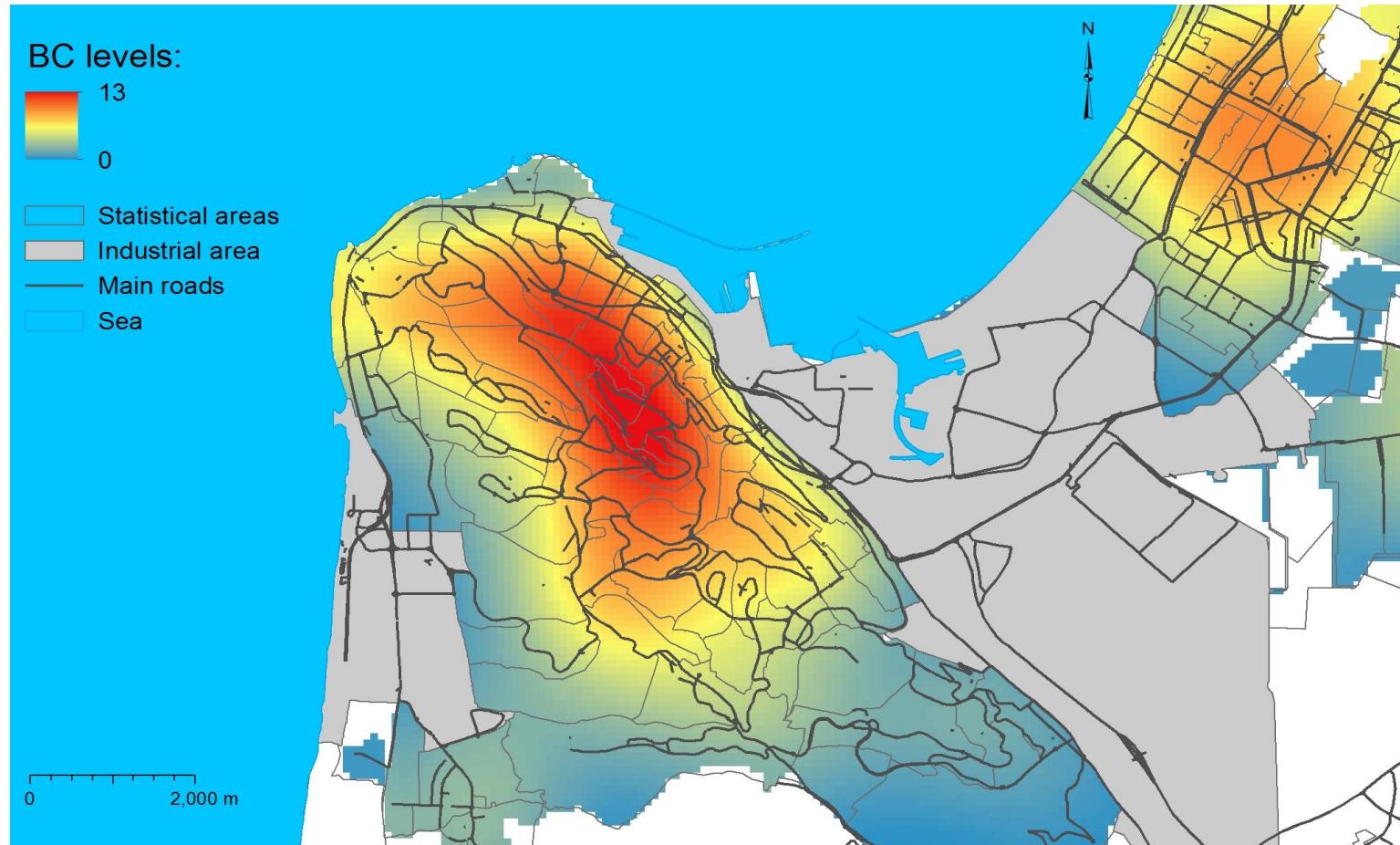
Data on ALAN exposure


400-700 nm


570-700 nm

490-570 nm

400-490 nm

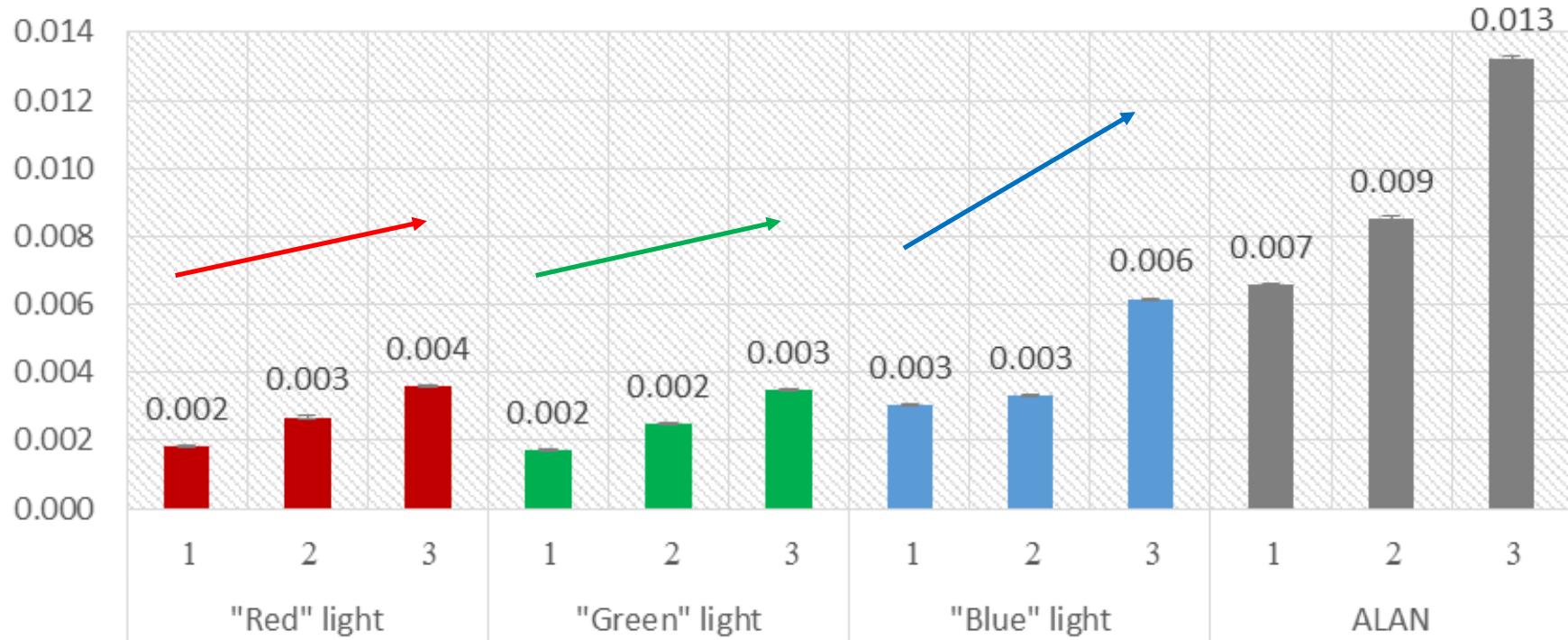


Intensities of ALAN (DN) emitted from the Greater Haifa Metropolitan Area and its red, green and blue bands

(Source: JSC, 2016; Image ID ISS045-E-148262: date/time taken – 29 Nov 2015/01:53:22 GMT

Variable	N	Minimum	Maximum	Mean	Std. Deviation
ALAN intensity (DN)	611,664	0	765	47.372	70.074
Red light intensity (DN)	611,664	0	255	14.017	31.152
Green light intensity (DN)	611,664	0	255	12.951	25.226
Blue light intensity (DN)	611,664	0	255	20.404	16.353

Data on BC incidence



BC incidence (number of cases per km^2) in the Greater Haifa Metropolitan Area

(Source: the Israel National Cancer Registry, year-2013)

Notes: Smooth surface of BC incidence values was obtained using *Kernel* interpolation technique in ArcGIS software)

Results (I): ALAN across areas of different SES levels

Average intensities of ALAN and its sub-spectra (per population densities)
for the populations of different SES levels
("1"= relatively lower SES, N=109,656;
"2"=middle SES, N=201,166;
"3"= relatively higher SES, N=300,837)

Results (II):

Pearson's correlations

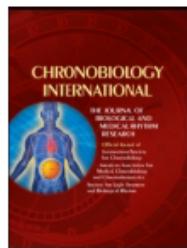
Variables	SES	ALAN (lg)	"Red" ALAN (lg)	"Green" ALAN (lg)	"Blue" ALAN (lg)
BC incidence	0.347	0.399	0.102	0.403	0.418

Results (III): OLS regressions

Predictors	Basic Model		BC vs. SES		BC vs. ALAN	
	(B)	Beta	(B)	Beta	(B)	Beta
(Constant)	(0.820)***	-	(0.954)***	-	(-0.072)***	-
Population density (persons per km ²)	(0.065)***	0.470	(0.063)***	0.460	(0.058)***	0.418
Women over 65 yo (% of total population)	(0.006)***	0.113	(0.005)***	0.095	(0.007)***	0.139
Average size of the household (persons)	(-0.100)***	-0.108	(-0.098)***	-0.106	(-0.084)***	-0.090
Jewish population (% of total population)	(1.31E-04)***	0.007	(-0.001)***	-0.029	(-1.12E-05)***	-0.006
Distance to the closest main road (m)	(-0.001)***	-0.267	(-0.001)***	-0.275	(-4.14E-05)***	-0.181
Distance to the industrial zone (m)	(2.13E-04)***	0.594	1.21E-04)***	0.337	(2.66E-05)***	0.743
Squared distance to the industrial zone (m ²)	(-3.73E-08)***	-0.574	(-2.09E-08)***	-0.322	(-4.27E-08)***	-0.658
SES	-	-	(0.103)***	0.188	-	-
ALAN (ln)	-	-	-	-	(0.351)***	0.257
N of obs.	366,383		366,383		366,383	
R ² -adjusted	0.589		0.613		0.634	
SEE	0.378		0.366		0.356	
F	7.51E+04		7.27E+04		7.94E+04	

Data Sources: the Israel Central Bureau of Statistics; calculations based on the data from the national mapping company (MAPI).

Results (III): OLS regressions


Predictors	BC vs. BLUE ALAN		BC vs. GREEN ALAN		BC vs. RED ALAN	
	(B)	Beta	(B)	Beta	(B)	Beta
(Constant)	(0.123)***	-	(0.133)***	-	(0.726)***	-
Population density (persons per km ²)	(0.057)***	0.416	(0.058)***	0.421	(0.064)***	0.467
Women over 65 yo (% of total population)	(0.007)***	0.139	(0.007)***	0.139	(0.006)***	0.116
Average size of the household (persons)	(-0.087)***	-0.094	(-0.081)***	-0.087	(-0.094)***	-0.102
Jewish population (% of total population)	(-4.32E-04)***	-0.025	(-2.06E-04)***	-0.012	(2.72E-04)***	0.015
Distance to the closest main road (m)	(-3.88E-04)***	-0.170	(-4.13E-04)***	-0.181	(-0.001)***	-0.263
Distance to the industrial zone (m)	(2.58E-04)***	0.719	(2.59E-04)***	0.723	(2.24E-04)***	0.626
Squared distance to the industrial zone (m ²)	(-4.11E-08)***	-0.633	(-4.16E-08)***	-0.640	(-3.88E-08)***	-0.597
Blue band of ALAN	(0.332)***	0.280	-	-	-	-
Green band of ALAN	-	-	(0.327)***	0.259	-	-
Red band of ALAN	-	-	-	-	(0.042)***	0.038
N of obs.	366,383		366,383		366,383	
R ² -adjusted	0.642		0.635		0.591	
SEE	0.352		0.356		0.377	
F	8.22E+04		7.97E+04		6.61E+04	

Results (III): OLS regressions

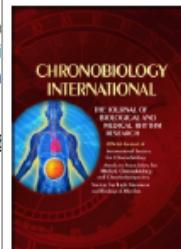
Predictors	BC vs. SES & BLUE ALAN		BC vs. SES & GREEN ALAN		BC vs. SES & RED ALAN	
	(B)	Beta	(B)	Beta	(B)	Beta
(Constant)	(0.252)***	-	(0.256)***	-	(0.830)***	-
Population density	(0.056)***	0.405	(0.056)***	0.409	(0.063)***	0.455
Women over 65 yo	(0.006)***	0.121	(0.006)***	0.121	(0.005)***	0.098
Average size of the household	(-0.085)***	-0.092	(-0.078)***	-0.084	(-0.090)***	-0.098
Jewish population	(-0.001)***	-0.062	(-0.001)***	-0.050	(-3.37E-04)***	-0.019
Distance to the closest main road	(-4.03E-04)***	-0.177	(-4.26E-04)***	-0.187	(-0.001)***	-0.270
Distance to the industrial zone	(1.64E-04)***	0.457	(1.64E-04)***	0.456	(1.34E-04)***	0.373
Squared distance to the industrial zone	(-2.44E-08)***	-0.375	(-2.45E-08)***	-0.378	(-2.26E-08)***	-0.348
SES	(0.105)***	0.193	(0.108)***	0.197	(0.105)***	0.192
Blue band of ALAN	(0.336)***	0.284	—	—	—	—
Green band of ALAN	—	-	(0.335)***	0.265	—	—
Red band of ALAN	—	-	—	—	(0.056)***	0.051
N of obs.	366,383		366,383		366,383	
R²-adjusted	0.668		0.662		0.616	
SEE	0.340		0.342		0.365	
F	(81767.842)***		(79574.559)***		(65206.323)***	
Moran's I	(1181.593)***		(1180.989)***		(1184.887)***	

Conclusions

- The **intensity** of short wavelength (“blue”) ALAN is **higher in higher SES areas** than in lower SES ones
- In multiple regressions, “green” and “blue” ALAN add **more** to the explanation of BC incidence than SES

ISSN: 0742-0528 (Print) 1525-6073 (Online) Journal homepage: <http://www.tandfonline.com/loi/icbi20>

Artificial Light at Night (ALAN) and breast cancer incidence worldwide: A revisit of earlier findings with analysis of current trends


Natalia Rybnikova, Abraham Haim & Boris A. Portnov

To cite this article: Natalia Rybnikova, Abraham Haim & Boris A. Portnov (2015): Artificial Light at Night (ALAN) and breast cancer incidence worldwide: A revisit of earlier findings with analysis of current trends, *Chronobiology International*, DOI: [10.3109/07420528.2015.1043369](https://doi.org/10.3109/07420528.2015.1043369)

To link to this article: <http://dx.doi.org/10.3109/07420528.2015.1043369>

Published online: 23 Jun 2015.

Chronobiology International
The Journal of Biological and Medical Rhythm Research

ISSN: 0742-0528 (Print) 1525-6073 (Online) Journal homepage: <http://www.tandfonline.com/loi/icbi20>

Population-level study links short-wavelength nighttime illumination with breast cancer incidence in a major metropolitan area

Nataliya Rybnikova & Boris A. Portnov

To cite this article: Nataliya Rybnikova & Boris A. Portnov (2018): Population-level study links short-wavelength nighttime illumination with breast cancer incidence in a major metropolitan area, *Chronobiology International*, DOI: [10.1080/07420528.2018.1466802](https://doi.org/10.1080/07420528.2018.1466802)

To link to this article: <https://doi.org/10.1080/07420528.2018.1466802>

[View supplementary material](#)

Published online: 16 May 2018.

Thank you for your attention!

nataliya.rybnikova@gmail.com